Центр описанной сферы находится на равном расстоянии от всех вершин пирамиды. Геометрическим местом точек, равноудалённых от вершин данного треугольника в пространстве, является перпендикуляр к плоскости этого треугольника, проходящий через центр его описанной окружности, который, поскольку треугольник правильный, является по совместительству точкой пересечения медиан, высот, срединных перпендикуляров и биссектрис треугольника, которые для правильного треугольника совпадают. Расстояние от центра правильного треугольника до любой из его вершины равно двум третям его высоты, т.е. 3√3/2*2/3дм=√3дм. Центр описанной сферы должен также находиться на одном и том же расстоянии от двух концов бокового ребра, перпендикулярного основанию. Рассмотрим срединный перпендикуляр для этого ребра, пересекающий указанный выше перпендикуляр к плоскости. Он будет находиться на расстоянии 2дм/2=1дм от плоскости основания, а точка его пересечения с указанным перпендикуляром к плоскости основания есть центр искомой сферы. Следовательно, в прямоугольном треугольнике, образуемым вершиной основания при перпендикулярном ребре, центром основания и центром описанной сферы один катет равен √3дм, второй 1дм, а гипотенуза, равна √(3+1)=√4=2дм - искомый радиус описанной сферы.
ответ: 2дм.
|CM| = 5.
Объяснение:
Речь идет о векторах. По правилу вычитания и сложения векторов имеем:
АВ - АС = СВ; СВ + ВМ = СМ.
|CM| = 5 см , так как это медиана из прямого угла.
Или так:
Треугольник АВС равнобедренный, следовательно
<BAC = <ABC = 45°.
АМ = 5 см, так как СМ - медиана. В треугольнике АМС
Cos(<MAC) = AM/AC = Cos45° =>
AC = AM/Cos45 = 5/(√2/2) = 5√2.
Разность векторов AB - AC = CB (по правилу разности векторов)
|CB| = √(AB²+AC² - 2*AB*BC*Cos45) или
|CB| = √(100+50-2*10*5√2*√2/2) =√50=5√2.
Cумма векторов СВ +ВМ = СМ (по правилу сложения векторов).
|CM| = √(CB²+BM² - 2*CB*BM*Cos45) = √(50+25-50) = 5.