Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
Перпендикуляр к плоскости перпендикулярен любой прямой в плоскости.
AOK=90, из треугольника AOK по теореме Пифагора
AK= √(AO^2+OK^2) =√(32+100) =√132 =2√33 (см)
Треугольники AOK и BOK равны по двум катетам, AK=BK. Аналогично с остальными вершинами, точка K равноудалена от вершин основания.
(Пересечение диагоналей прямоугольника - центр описанной окружности. Если вершина пирамиды проецируется в центр описанной окружности основания - боковые ребра равны.)
Диагонали квадрата перпендикулярны, равны, точкой пересечения делятся пополам.
Сторона квадрата 8, половина диагонали AO=4√2 см.
Перпендикуляр к плоскости перпендикулярен любой прямой в плоскости.
AOK=90, из треугольника AOK по теореме Пифагора
AK= √(AO^2+OK^2) =√(32+100) =√132 =2√33 (см)
Треугольники AOK и BOK равны по двум катетам, AK=BK. Аналогично с остальными вершинами, точка K равноудалена от вершин основания.
(Пересечение диагоналей прямоугольника - центр описанной окружности. Если вершина пирамиды проецируется в центр описанной окружности основания - боковые ребра равны.)