В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
angalena
angalena
07.08.2022 21:06 •  Геометрия

Решите

Только 1 вариант
Все задачи


Решите Только 1 вариант Все задачи

Показать ответ
Ответ:
Sonechka55
Sonechka55
04.07.2020 18:59

a) Параллельные отсекают от угла подобные треугольники.

Отношение площадей подобных фигур равно квадрату коэффициента подобия.

MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)

EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)

S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)

б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.

S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21

S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28

S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2

S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =

(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)

0,0(0 оценок)
Ответ:
Riiiiiii
Riiiiiii
23.04.2023 09:37
Решение задачи:

решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.

предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон

но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:

правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству

т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать. 
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота