В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Построим Высоту BH. Из-за того, что это высота, ∠HBC = 90°,⇒(Следовательно) ∠ABH = 135° - 90° = 45°. Т.к ∠AHB = 90° (Смежный с Прямым углом), и в этом Δ-ке есть ∠-ол 45°, то ΔAHB - равнобедренный (По свойству прямоугольного Δ-ка).
Пусть х = AH = BH. Тогда 2x² = (3√2)².
Составим уравнение:
2x² = (3√2)²
2x² = 9×2 |÷2
x² = 9
√x² = √9
x = 3.
Таким образом получили, что AH = BH = 3, а так как BH - высота, то используем формулу площади, так как есть все нужные данные:
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²
24
Объяснение:
Построим трапецию ABCD.
Построим Высоту BH. Из-за того, что это высота, ∠HBC = 90°,⇒(Следовательно) ∠ABH = 135° - 90° = 45°. Т.к ∠AHB = 90° (Смежный с Прямым углом), и в этом Δ-ке есть ∠-ол 45°, то ΔAHB - равнобедренный (По свойству прямоугольного Δ-ка).
Пусть х = AH = BH. Тогда 2x² = (3√2)².
Составим уравнение:
2x² = (3√2)²
2x² = 9×2 |÷2
x² = 9
√x² = √9
x = 3.
Таким образом получили, что AH = BH = 3, а так как BH - высота, то используем формулу площади, так как есть все нужные данные:
(a + b)/2 × h = (6+10)/2 × 3 = 8×3 = 24