Решите , макс 1)найдите угол между плоскостями α и β.ab=4, ac=2. (рис 2) 2)abcd- прямоугольник. ab=5, ad=9, вм=12. найдите расстояние от точки м до прямой сd.(рис 3) 3)найдите угол ba1cпрямоугольного параллелепипедаabcda1b1c1d1, для которо-го ab=3, ad=5, aa1=4. ответ дайте в градусах.
Начинаем рассуждать.
∠АОВ = 140° - центральный, а центральный угол равен дуге, на которую он опирается. Значит и меньшая дуга АВ равна 140°.
Окружность представляет собой 360°. Найдем длину большей дуги АВ, пока тоже в градусах: 360° - 140° = 220°.Помимо того, что меньшая дуга АВ равна 140°, она еще равна и 98. Значит и большая дуга тоже не только равна 220°, но и еще чему-то там. Это неизвестное число обозначим за х и составим пропорцию.
В пропорции записываем градусы под градусами, числа без единиц измерения под числами без единиц измерения и решаем.
Ответ: 154.
32 см³
Объяснение:
Чтобы найти объем пирамиды, надо знать площадь основания и высоту пирамиды.
Проведем SH - высоту пирамиды. SH = 4 см.
Тогда АН, ВН и СН - проекции наклонных SA, SB и SC на плоскость основания соответственно.
∠SAH = ∠SBH = ∠SCH = 30°, значит прямоугольные треугольники равны ΔSAH = ΔSBH = ΔSCH по катету (SH - общий катет) и противолежащему острому углу. Следовательно
НА = НВ = НС, т.е. Н - это центр окружности, описанной около основания.
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.Итак, Н - середина гипотенузы АВ.
ΔSBH: ∠SHB = 90°,
ВН = SH · ctg 30° = 4√3 см
АВ = 2ВН = 2 · 4√3 = 8√3 см
ΔАВС: ΔАСВ = 90°, ∠ВАС = 15°
АС = АВ · cos 15° = 8√3 · cos 15°
BC = AB · sin 15° = 8√3 · sin15°
Площадь основания:
S = 0,5 · AC · BC
S = 0,5 · 8√3 · cos 15° · 8√3 · sin15°
Применим формулу синуса двойного угла:
S = 4 · 3 · 4 · sin 30° = 48 · 0,5 = 24 см²
Объем пирамиды:
см³