Касательная NM перпендикулярна радиусу ON. ONM - прямоугольный треугольник. Катет против угла 30° равен половине гипотенузы. ON=OM/2 => ∠NMO=30°. Касательные из одной точки составляют равные углы с прямой, проходящей через эту точку и центр окружности.
∠NMK=2∠NMO =30°*2 =60°
Это четвёртый рисунок
∠BAM найден в задаче (3) =30°. Отрезки касательных из одной точки равны, AM=BM, △AMB - равнобедренный, ∠BAM=∠ABM.
∠AMB=180°-2∠BAM =180°-30°*2 =120°
Это первый рисунок Касательная KL перпендикулярна радиусу OK. OKL - прямоугольный треугольник. Катет против угла 60° равен другому катету, умноженному на √3.
KL=OK√3 =6√3
Это третий рисунок Треугольник OAB - равносторонний (OA=OB - радиусы), ∠OAB=60°. Касательная AC перпендикулярна радиусу OA, ∠OAС=90°.
∠BAC=∠OAC-∠OAB =90°-60° =30°
Это пятый рисунок Касательная MN перпендикулярна радиусу OM. OMN - египетский треугольник (3:4:5) cо множителем 3 (OM=4*3; ON=5*3). MN=3*3=9
Это второй рисунок
Касательная NM перпендикулярна радиусу ON. ONM - прямоугольный треугольник. Катет против угла 30° равен половине гипотенузы. ON=OM/2 => ∠NMO=30°. Касательные из одной точки составляют равные углы с прямой, проходящей через эту точку и центр окружности.
∠NMK=2∠NMO =30°*2 =60°
Это четвёртый рисунок
∠BAM найден в задаче (3) =30°. Отрезки касательных из одной точки равны, AM=BM, △AMB - равнобедренный, ∠BAM=∠ABM.
∠AMB=180°-2∠BAM =180°-30°*2 =120°
Это первый рисунок Касательная KL перпендикулярна радиусу OK. OKL - прямоугольный треугольник. Катет против угла 60° равен другому катету, умноженному на √3.
KL=OK√3 =6√3
Это третий рисунок Треугольник OAB - равносторонний (OA=OB - радиусы), ∠OAB=60°. Касательная AC перпендикулярна радиусу OA, ∠OAС=90°.
∠BAC=∠OAC-∠OAB =90°-60° =30°
Это пятый рисунок Касательная MN перпендикулярна радиусу OM. OMN - египетский треугольник (3:4:5) cо множителем 3 (OM=4*3; ON=5*3). MN=3*3=9