ответ:
якласс лого
1. теорема синусов, теорема косинусов
теория:
теорема синусов
теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.
для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.
4cepure.jpg
стороны треугольника пропорциональны синусам противолежащих углов:
asina=bsinb=csinc
(в решении одновременно пишутся две части, они образуют пропорцию).
теорема синусов используется для вычисления:
неизвестных сторон треугольника, если даны два угла и одна сторона;
неизвестных углов треугольника, если даны две стороны и один прилежащий угол.
так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .
наиболее часто используемые тупые углы:
sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.
радиус описанной окружности
треуг2.jpg
asina=bsinb=csinc=2r , где r — радиус описанной окружности.
выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .
теорема косинусов
для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).
для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2−2⋅b⋅c⋅cosa .
также теорема исполняется для любой стороны треугольника:
b2=a2+c2−2⋅a⋅c⋅cosb ;
c2=a2+b2−2⋅a⋅b⋅cosc .
теорема косинусов используется для вычисления:
неизвестной стороны треугольника, если даны две стороны и угол между ними;
вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.
значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .
cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.
если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
вернуться в тему
следующее
copyright © 2019 якласс
контакты пользовательское соглашение
Дана правильная треугольная пирамида SABC, сторона основания AB равна 10, а высота SH равна 24. Точки M и N - середины рёбер SB и AB.
а) Находим длину L бокового ребра.
Перед этим определяем высоту основания:
h = a√3/2 = 10√3/2 = 5√3.
L = √(H² + ((2/3)h)²) = √(24² + (10√3/3)²) = 2√(457/3).
Теперь находим апофему А боковой грани.
A = √(H² + ((1/3)h)²) = √(24² + (5√3/3)²) = √(1753/3).
Заданная плоскость, проходящая через точки M и C параллельно прямой SN, пересекает ребро AB в точке K.
При этом линия сечения МК параллельна апофеме А = SN.
Поскольку SK - средняя линия треугольника NSB , то она делит NB пополам, или КВ = (1/4)АВ,
Доказано: AK:KB=3:1.
б) Находим длины сторон треугольника СМК, являющегося сечением пирамиды заданной плоскостью.
CK = √(h² + (a/4)²) = √((5√3)² + (10/4)²) = √75 + (25/4)) = √(325/4) = (5/2)√13.
MK = (1/2)A = (1/2)√(1753/3).
СМ находим как медиану треугольника BSC по теореме косинусов.
CM = √((L/2)² + a² - 2*(L/2)*a*cosB) =
= √((457/3) + 100 - 2*(1/2)√(1753/3)*0,20255) = 14,2244.
Площадь по формуле Герона равна: S = 54,11336 кв.ед.
ответ: S(CMK) = 54,11336 кв.ед.
ответ:
якласс лого
1. теорема синусов, теорема косинусов
теория:
теорема синусов
теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.
для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.
4cepure.jpg
теорема синусов
стороны треугольника пропорциональны синусам противолежащих углов:
asina=bsinb=csinc
(в решении одновременно пишутся две части, они образуют пропорцию).
теорема синусов используется для вычисления:
неизвестных сторон треугольника, если даны два угла и одна сторона;
неизвестных углов треугольника, если даны две стороны и один прилежащий угол.
так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .
наиболее часто используемые тупые углы:
sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.
радиус описанной окружности
треуг2.jpg
asina=bsinb=csinc=2r , где r — радиус описанной окружности.
выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .
теорема косинусов
для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).
для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.
4cepure.jpg
теорема косинусов
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2−2⋅b⋅c⋅cosa .
также теорема исполняется для любой стороны треугольника:
b2=a2+c2−2⋅a⋅c⋅cosb ;
c2=a2+b2−2⋅a⋅b⋅cosc .
теорема косинусов используется для вычисления:
неизвестной стороны треугольника, если даны две стороны и угол между ними;
вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.
значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .
наиболее часто используемые тупые углы:
cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.
если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
вернуться в тему
следующее
copyright © 2019 якласс
контакты пользовательское соглашение
Дана правильная треугольная пирамида SABC, сторона основания AB равна 10, а высота SH равна 24. Точки M и N - середины рёбер SB и AB.
а) Находим длину L бокового ребра.
Перед этим определяем высоту основания:
h = a√3/2 = 10√3/2 = 5√3.
L = √(H² + ((2/3)h)²) = √(24² + (10√3/3)²) = 2√(457/3).
Теперь находим апофему А боковой грани.
A = √(H² + ((1/3)h)²) = √(24² + (5√3/3)²) = √(1753/3).
Заданная плоскость, проходящая через точки M и C параллельно прямой SN, пересекает ребро AB в точке K.
При этом линия сечения МК параллельна апофеме А = SN.
Поскольку SK - средняя линия треугольника NSB , то она делит NB пополам, или КВ = (1/4)АВ,
Доказано: AK:KB=3:1.
б) Находим длины сторон треугольника СМК, являющегося сечением пирамиды заданной плоскостью.
CK = √(h² + (a/4)²) = √((5√3)² + (10/4)²) = √75 + (25/4)) = √(325/4) = (5/2)√13.
MK = (1/2)A = (1/2)√(1753/3).
СМ находим как медиану треугольника BSC по теореме косинусов.
CM = √((L/2)² + a² - 2*(L/2)*a*cosB) =
= √((457/3) + 100 - 2*(1/2)√(1753/3)*0,20255) = 14,2244.
Площадь по формуле Герона равна: S = 54,11336 кв.ед.
ответ: S(CMK) = 54,11336 кв.ед.