А) этот вопрос совсем простенький - достаточно доказать, что AM = AS; тогда высота AT треугольника AMS одновременно будет и медианой. Радиус описанной окружности вокруг правильного треугольника в основании AH, равен стороне, деленной на √3, то есть AH = 4; а высота - в полтора раза больше, то есть AM = 6; AS^2 = AH^2 + SH^2 = 4^2 + 2^2*5 = 36; AS = 6 = AM; доказано. б) тут посложнее, но не на много. Дело в том, что прямые эти взаимно перпендикулярны (AT - высота пирамиды). Поэтому надо найти расстояние от точки T до SB. Из пункта а) следует, что это расстояние в 2 раза меньше, чем от M до SB, то есть половина высоты (к гипотенузе) прямоугольного треугольника MSB c катетом BM = 2√3 и гипотенузой 6; SM^2 = 6^2 - (2√3)^2 = 24; SM = 2√6; высота MSB равна (2√3)*(2√6)/6 = 2√2; а нужное расстояние в 2 раза меньше, то есть просто √2;
Вообще есть формула, которая описывает зависимость радиуса вписанной в правильный треугольник окружности от стороны этого треугольника. Выводится так: Центр вписанной окружности - точка пересечения биссектрис. В правильном треугольнике биссектриса является по совместительству медианой и высотой, поэтому, когда мы проведем все 3 биссектрисы, то получим маленькие п\у треугольнички, один из катетов которых - половина стороны, другой - радиус вписанной окружности. Угол, лежащий напротив радиуса, равен 30 градусов (потому как биссектриса). Значит r = 1/2 стороны * tg 30 = 3 * 1/V3 = V3. Тогда площадь этого круга будет равна pi * rˆ2 = 3pi.
Радиус описанной окружности вокруг правильного треугольника в основании AH, равен стороне, деленной на √3, то есть AH = 4; а высота - в полтора раза больше, то есть AM = 6;
AS^2 = AH^2 + SH^2 = 4^2 + 2^2*5 = 36; AS = 6 = AM; доказано.
б) тут посложнее, но не на много. Дело в том, что прямые эти взаимно перпендикулярны (AT - высота пирамиды). Поэтому надо найти расстояние от точки T до SB. Из пункта а) следует, что это расстояние в 2 раза меньше, чем от M до SB, то есть половина высоты (к гипотенузе) прямоугольного треугольника MSB c катетом BM = 2√3 и гипотенузой 6;
SM^2 = 6^2 - (2√3)^2 = 24; SM = 2√6;
высота MSB равна (2√3)*(2√6)/6 = 2√2; а нужное расстояние в 2 раза меньше, то есть просто √2;
Выводится так:
Центр вписанной окружности - точка пересечения биссектрис. В правильном треугольнике биссектриса является по совместительству медианой и высотой, поэтому, когда мы проведем все 3 биссектрисы, то получим маленькие п\у треугольнички, один из катетов которых - половина стороны, другой - радиус вписанной окружности. Угол, лежащий напротив радиуса, равен 30 градусов (потому как биссектриса). Значит r = 1/2 стороны * tg 30 = 3 * 1/V3 = V3.
Тогда площадь этого круга будет равна pi * rˆ2 = 3pi.