Треугольник прямоугольный, А - вершина, СВ - основание (ну, чтоб понятно было. С справа).
АВ = 15 sinA = cosB = 0.6 АС, ВС = ? ____________________ sin²A + cos²A = 1 , ⇒ (следовательно) cos²A = 1² - 0.6² или cosA = = = 2, cosA = 2 ____________________ Теорема синусов: (в нашем случае а = СВ, b = АС, с = АВ). Нужно взять только два, следовательно, берем первую дробь (потому что есть синус А) и последнюю, потому что есть сторона С. ____________________ (произведение крайних равно произведению средних), ⇒ СВ = 15*0,6 = 9 ____________________ Дальше по теореме Пифагора: Квадрат гипотенузы равен сумме квадратов катетов, с² = а² + b² ____________________ В нашем случае 15² = 9² + АС² , ⇒ АС² = 225 - 81 АС = АС = 12 ____________________ ответ: СВ = 9; АС = 12.
Из условия имеем, треугольник MAD, прямоугольный, и угол между плоскостями равен углу MAD треугольника, следовательно MD = Тангенс(30)*AD, MA = 2*MD.
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно: это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь
АВ = 15
sinA = cosB = 0.6
АС, ВС = ?
____________________
sin²A + cos²A = 1 , ⇒ (следовательно)
cos²A = 1² - 0.6² или
cosA = = = 2, cosA = 2
____________________
Теорема синусов:
(в нашем случае а = СВ, b = АС, с = АВ). Нужно взять только два, следовательно, берем первую дробь (потому что есть синус А) и последнюю, потому что есть сторона С.
____________________
(произведение крайних равно произведению средних), ⇒
СВ = 15*0,6 = 9
____________________
Дальше по теореме Пифагора:
Квадрат гипотенузы равен сумме квадратов катетов, с² = а² + b²
____________________
В нашем случае
15² = 9² + АС² , ⇒
АС² = 225 - 81
АС =
АС = 12
____________________
ответ: СВ = 9; АС = 12.
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно:
это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь