Площадь трапеции исчисляется по формуле полусуммы оснований на высоту. Нам предстоит найти высоту и оба основания. Нам дан угол 120 градусов, как мы знаем, сумма углов трапеции( как и любого выпуклого 4-х угольника) равна 360 градусов, тогда угол при вершине С=120 градусов, а углы при основании равнобокой трапеции равны по 60( при вершинах А и Д), высота - перпендекуляр, т.е. углы опущенные к основанию равны 90 градусов(даже отмечено на рисунке). Тогда рассмотрим треугольник АВН В нем угол при вершине В 30, т.к. угол при А 60. Из теоремы Пифагора мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы, а гипотенуза у нас сторона АВ, значит АН =2, АD=AH+HD=2+9=11 AH=PD=2, значит HF=BC=AD-AH-PD=AD-2AH=11-4=7, BC=7,AD=11 . мы нашли оба основания, а значит осталось найти высоту. Воспользуемся теоремой Пифагора
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
18√3см²
Объяснение:
Площадь трапеции исчисляется по формуле полусуммы оснований на высоту. Нам предстоит найти высоту и оба основания. Нам дан угол 120 градусов, как мы знаем, сумма углов трапеции( как и любого выпуклого 4-х угольника) равна 360 градусов, тогда угол при вершине С=120 градусов, а углы при основании равнобокой трапеции равны по 60( при вершинах А и Д), высота - перпендекуляр, т.е. углы опущенные к основанию равны 90 градусов(даже отмечено на рисунке). Тогда рассмотрим треугольник АВН В нем угол при вершине В 30, т.к. угол при А 60. Из теоремы Пифагора мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы, а гипотенуза у нас сторона АВ, значит АН =2, АD=AH+HD=2+9=11 AH=PD=2, значит HF=BC=AD-AH-PD=AD-2AH=11-4=7, BC=7,AD=11 . мы нашли оба основания, а значит осталось найти высоту. Воспользуемся теоремой Пифагора
BH=√AB²-AH²=√4²-2²=√16-4=√12=2√3
Осталось подставить в формулу
S=1/2*(AD+BC)*BH=1/2*(7+11)*2√3=18√3
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.