О - центр окружности Три данных по условию вписанных угла изображены на рисунке красным. Соответствующие им центральные углы в два раза больше. ∠CBD = 27° ⇒ ∠CОD = 54° ∠ACD = 54° ⇒ ∠AОD = 108° ∠ADB = 62° ⇒ ∠AОB = 124° Сумма всех центральных углов вокруг точки О равна 360°, и это нам найти четвёртый центральный угол ∠ВОС ∠ВОС = 360°-54°-108°-124° = 74° Теперь можно найти углы четырёхугольника, снова учитывая, что вписанный угол в два раза меньше центрального, опирающегося на ту же дугу. ∠ABC = 1/2(108+54) = 54+27 = 81° ∠BCD = 1/2(108+124) = 54+62 = 116° ∠CDA = 1/2(124+74) = 62+37 = 99° ∠DAB = 1/2(74+54) = 37+27 = 64°
1. <OAD=<BOA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АО. Но <BAO=<OAD по условию, значит <BOA=<BAO, и треугольник АВО - равнобедренный с равными углами при основании АО, значит АВ=ВО 2. <COD=<ODA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DО. Но <ODA=<CDO по условию, значит <COD=<CDO, и треугольник OCD - равнобедренный с равными углами при основании OD, и ОС=CD. 3. Поскольку CD=AB, мы получаем, что: АВ=ВО=ОС=CD, и точка О - середина ВС. Значит АВ=32/2 = 16 (Сори что без рисунка)
Три данных по условию вписанных угла изображены на рисунке красным.
Соответствующие им центральные углы в два раза больше.
∠CBD = 27° ⇒ ∠CОD = 54°
∠ACD = 54° ⇒ ∠AОD = 108°
∠ADB = 62° ⇒ ∠AОB = 124°
Сумма всех центральных углов вокруг точки О равна 360°, и это нам найти четвёртый центральный угол ∠ВОС
∠ВОС = 360°-54°-108°-124° = 74°
Теперь можно найти углы четырёхугольника, снова учитывая, что вписанный угол в два раза меньше центрального, опирающегося на ту же дугу.
∠ABC = 1/2(108+54) = 54+27 = 81°
∠BCD = 1/2(108+124) = 54+62 = 116°
∠CDA = 1/2(124+74) = 62+37 = 99°
∠DAB = 1/2(74+54) = 37+27 = 64°
<BOA=<BAO, и треугольник АВО - равнобедренный с равными углами при основании АО, значит
АВ=ВО
2. <COD=<ODA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DО. Но <ODA=<CDO по условию, значит
<COD=<CDO, и треугольник OCD - равнобедренный с равными углами при основании OD, и
ОС=CD.
3. Поскольку CD=AB, мы получаем, что:
АВ=ВО=ОС=CD, и точка О - середина ВС. Значит
АВ=32/2 = 16
(Сори что без рисунка)