В задании, очевидно, надо понимать фразу так: расстояние от СТОРОНЫ основания до противолежащей боковой грани равно 5 корень из 3.
Проведём осевое сечение пирамиды перпендикулярно стороне основания. Получим равнобедренный треугольник, углы α при основании которого равны двугранным углам пирамиды, а высота Н равна высоте пирамиды.
Основание этого треугольника равно стороне основания пирамиды.
Находим синус угла при основании треугольника:
sin α = 5√3/10 = √3/2. Значит, α = 60°.
Отсюда находим высоту пирамиды Н = 5*tg 60° = 5√3.
Получаем ответ: V = (1/3)SoH = (1/3)*10²*5√3 = 500√3/3 куб.ед.
В задании, очевидно, надо понимать фразу так: расстояние от СТОРОНЫ основания до противолежащей боковой грани равно 5 корень из 3.
Проведём осевое сечение пирамиды перпендикулярно стороне основания. Получим равнобедренный треугольник, углы α при основании которого равны двугранным углам пирамиды, а высота Н равна высоте пирамиды.
Основание этого треугольника равно стороне основания пирамиды.
Находим синус угла при основании треугольника:
sin α = 5√3/10 = √3/2. Значит, α = 60°.
Отсюда находим высоту пирамиды Н = 5*tg 60° = 5√3.
Получаем ответ: V = (1/3)SoH = (1/3)*10²*5√3 = 500√3/3 куб.ед.
50,56 см
Объяснение:
1) В треугольнике ABD стороны AD и AB являются катетами, а BD - гипотенузой. По теореме Пифагора находим АВ:
АВ^2 = DB^2 - AD^2
АВ^2 = 18^2 - 14^2 = 324 - 196 = 128
АВ = √128 = √64 * 2 = 8√2
2) Периметр прямоугольника равен:
(АВ + AD) * 2 = (14 + 8√2) * 2 = 28 + 16√2 = 4(7+4√2) см.
Тот же ответ можно записать по-другому, с округлением до сотых, т.к. √2 является иррациональным числом.
4(7+4√2) = 4* (7 + 4*1,41) = 4* (7 + 5,64) = 4 * 12,64 = 50,56 см
ответ: 4(7+4√2) см, или (что одно и то же) 50,56 см