1. М - середина АВ, значит МВ = АВ/2 Р - середина МВ, значит РВ = МВ/2 = АВ/4 К - середина ВС, значит КС = ВС/2 Е - середина КС, значит ЕС = КС/2 = ВС/4 N - середина АС, значит NA = АС/2 G - середина NA, значит GA = NA/2 = AC/4 По условию PB + EC + GA = 12 АВ/4 + ВС/4 + АС/4 = 12 1/4 · (АВ + ВС + АС) = 12 АВ + ВС + АС = 12 · 4 = 48 (см)2.
Из решения первой задачи следует, что
АР = 3/4 АВ ВЕ = 3/4 ВС CG = 3/4 AC По условию AP + BE + CG = 108 3/4 АВ + 3/4 ВС + 3/4 АС = 108 3/4 · (АВ + ВС + АС) = 108 АВ + ВС + АС = 108 · 4/3 = 144 (см)
Объяснение:
Дано: ABCD - ромб; AC = 16 см; h = 9,6 см.
Найти: S
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам:
AC⊥BD; AO = OC = 16 : 2 = 8 см.
Проведём высоту ромба MK через точку пересечения диагоналей O.
MK = h = 9,6 см
Прямоугольные треугольники OMB и OKD равны по равным вертикальным углам:
∠MOB = ∠KOD ⇒ ΔOMB = ΔOKD
⇒ OM = OK = MK : 2 = 9,6 : 2 = 4,8 см
ΔAMO - прямоугольный, ∠AMO = 90°
По теореме Пифагора:
AM² = AO² - OM²
Прямоугольные треугольники AMO и AOB подобны по общему острому углу MAO.
\begin{gathered}\dfrac{AO}{AB}=\dfrac{AM}{AO}AB=\dfrac{AO^2}{AM}=\dfrac{8^2}{6,4}=\dfrac{64}{6,4}=10\end{gathered}
AB
AO
=
AM
AB=
2
6,4
8
64
=10
AB = 10 см
Площадь ромба равна произведению стороны на высоту:
S=AB\cdot MK=10\cdot 9,6=96S=AB⋅MK=10⋅9,6=96 см²
ответ: 96 см²
можно ЛУЧШИЙ
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
Объяснение:
Дано: ABCD - ромб; AC = 16 см; h = 9,6 см.
Найти: S
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам:
AC⊥BD; AO = OC = 16 : 2 = 8 см.
Проведём высоту ромба MK через точку пересечения диагоналей O.
MK = h = 9,6 см
Прямоугольные треугольники OMB и OKD равны по равным вертикальным углам:
∠MOB = ∠KOD ⇒ ΔOMB = ΔOKD
⇒ OM = OK = MK : 2 = 9,6 : 2 = 4,8 см
ΔAMO - прямоугольный, ∠AMO = 90°
По теореме Пифагора:
AM² = AO² - OM²
Прямоугольные треугольники AMO и AOB подобны по общему острому углу MAO.
\begin{gathered}\dfrac{AO}{AB}=\dfrac{AM}{AO}AB=\dfrac{AO^2}{AM}=\dfrac{8^2}{6,4}=\dfrac{64}{6,4}=10\end{gathered}
AB
AO
=
AO
AM
AB=
AM
AO
2
=
6,4
8
2
=
6,4
64
=10
AB = 10 см
Площадь ромба равна произведению стороны на высоту:
S=AB\cdot MK=10\cdot 9,6=96S=AB⋅MK=10⋅9,6=96 см²
ответ: 96 см²
можно ЛУЧШИЙ