Даны точки А(-1;2), В(2;-1), С(5;3).
Вектор АВ = ((2-(-1)); (-1-2)) = (3; -3), модуль равен √(9+9) = √18 = 3√2.
Вектор АС = ((5-(-1); (3-2)) = (6; 1), модуль равен √(36+1) = √37.
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.
Треугольник АВС, угол С=180-50-60=70°(по теореме о сумме углов треугольника)
Треугольник FED,угол F= 180-20-90=70°(по теореме о сумме углов треугольника)
Треугольник KML, угол К= L( по свойству углов равнобедренного треугольника) К=L=( 180-40):2=70°(По теореме о сумме углов треугольника)
Треугольник ONP, угол О=Р=20°, угол N= 180-20-20=140°(по теореме о сумме углов треугольника)
Треугольник АВС, угол А=В=(180-90):2=45°(по теореме о сумме углов треугольника)
Треугольник СDE, углы С= D=E=60°( по свойству углов равнлстороннего треугольника)
Треугольник АВС с внешним уголом, угол С(внутренний) =100°, угол АСЕ=80( по свойству внешних углов)
Треугольник АВС с внешним углом, угол А(внутренний) =30°, угол СВА)=80°
Треугольник АСD= с внешним углом, угол САD(внутренний) =40°(как смежные), угол САD=CDA=40°=>угол С =180-40-40=100°(по теореме о сумме углов треугольника)
Треугольник ЕСD с внешним углом, угол D(внутренний)=110°(как смежный), угол Е=С=(180-110):2=35°( по теореме о сумме углов треугольника)
Даны точки А(-1;2), В(2;-1), С(5;3).
Вектор АВ = ((2-(-1)); (-1-2)) = (3; -3), модуль равен √(9+9) = √18 = 3√2.
Вектор АС = ((5-(-1); (3-2)) = (6; 1), модуль равен √(36+1) = √37.
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.
Треугольник АВС, угол С=180-50-60=70°(по теореме о сумме углов треугольника)
Треугольник FED,угол F= 180-20-90=70°(по теореме о сумме углов треугольника)
Треугольник KML, угол К= L( по свойству углов равнобедренного треугольника) К=L=( 180-40):2=70°(По теореме о сумме углов треугольника)
Треугольник ONP, угол О=Р=20°, угол N= 180-20-20=140°(по теореме о сумме углов треугольника)
Треугольник АВС, угол А=В=(180-90):2=45°(по теореме о сумме углов треугольника)
Треугольник СDE, углы С= D=E=60°( по свойству углов равнлстороннего треугольника)
Треугольник АВС с внешним уголом, угол С(внутренний) =100°, угол АСЕ=80( по свойству внешних углов)
Треугольник АВС с внешним углом, угол А(внутренний) =30°, угол СВА)=80°
Треугольник АСD= с внешним углом, угол САD(внутренний) =40°(как смежные), угол САD=CDA=40°=>угол С =180-40-40=100°(по теореме о сумме углов треугольника)
Треугольник ЕСD с внешним углом, угол D(внутренний)=110°(как смежный), угол Е=С=(180-110):2=35°( по теореме о сумме углов треугольника)