Відповідь:
Пояснення:
3)
Гипотенуза прямоугольного триугольника равна диаметру описаной окружности NM=2×OM=26
Из теореми Пифагора KN^2=NM^2-KM^2= 676-576 =100 → KN=10
P=10+26+24=60
52)
P=2×40=80 из свойст описаной окружности в четирехугольник, сумми противоположних сторон равни
54) сумма противоположних углов равна 180°
/_N=180-75=105°
/_М=180-53=127° (качество фото не очень, если ошиблась в углах, подставь правильний)
16)
По теореме Пифагора
20^2=(8+r)^2+(12+r)^2
400=64+16r+r^2+144+24r+r^2
400=208+2r^2+40r
2r^2+40r-192=0
r^2+20-96=0
r= -10± 14
Так как значение радиуса >0, то
r=4
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение:
Відповідь:
Пояснення:
3)
Гипотенуза прямоугольного триугольника равна диаметру описаной окружности NM=2×OM=26
Из теореми Пифагора KN^2=NM^2-KM^2= 676-576 =100 → KN=10
P=10+26+24=60
52)
P=2×40=80 из свойст описаной окружности в четирехугольник, сумми противоположних сторон равни
54) сумма противоположних углов равна 180°
/_N=180-75=105°
/_М=180-53=127° (качество фото не очень, если ошиблась в углах, подставь правильний)
16)
По теореме Пифагора
20^2=(8+r)^2+(12+r)^2
400=64+16r+r^2+144+24r+r^2
400=208+2r^2+40r
2r^2+40r-192=0
r^2+20-96=0
r= -10± 14
Так как значение радиуса >0, то
r=4
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение: