Решить тест.
1.стороны параллелограмма равны 5 см и 6 см, а один из углов параллелограмма равен 45°. найдите большую диагональ параллелограмма.
2.найдите угол подъема дороги, если автобус, пройдя по ней 10 км в гору, поднялся на высоту 145 м.
3.стороны треугольника 1,2 дм, 14 см и 90 мм. найдите косинус наибольшего угла этого треугольника.
4.два парохода начинают движение из одного и того же пункта и двигаются равномерно по прямым пересекающимся под углом 60°. скорость первого 70 км/ч, скорость второго 80 км/ч. вычислить на каком расстоянии друг от друга они будут находиться через 3 часа.
5.вокруг четырехугольника авсd с взаимно перпендикулярными диагоналями ас и вd описана окружность радиуса 2. найдите длину стороны сd, если ав = 3.
6.если сумма углов треугольника равна a, то квадрат угла квадрата равен.
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см