Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
<ABC=zACB(Т.к. углы при основании равнобедр. треуг.)=30° <BAC=180-30*2=120°
a)AB * AC = 8 * 8 * cos120 = 64 * (-cos60) 64 * (-) = -32
b) Т.к. DE соединяет середины двух сторон.значит,DE-средняя линия равнобедренного треугольника ABC → DE||BC и DE=0.5BC По теореме синусов:
BC AB
sin120 sin30
BC
AB * sin120
sin30
BC BC = 8√3 8* 2
DE=4√3 BC * DE = 8√3 * 4√3 * cos0 1 €96 - 32 * 3 *
с)Если отложить от одной точки вектора АВ и ВС,то образуется угол = 180-30=150°(Просто продолжаешь AB и находишь смежный угол)
AB* BC = = 8 * 8√3* cos150 = 64√/3* *
(- = -32 * 3 = -9