Решить , с рисунком к каждой номер 1. abcda1b1c1d1 - параллелепипед. изобразите на рисунке векторы, равные: 1) ас1 + da1 + b1b + ba; 2) ba - b1c1. номер 2. abcda1b1c1d1-параллелепипед, отрезки ас и bd пересекаются в точке м. разложите вектор а1м по векторам а1а=а, а1в1=b, a1d1=c. номер 3. в тетраэдре dabc m-точка пересечения медиан грани dbc, e-середина ac. разложите вектор em по векторам ac , ab и ad номер 4. dabc- тетраэдр, о- точка пересечения медиан треугольника abc, точка f лежит на ad, причем af: fd= 3: 1. разложите вектор of по векторам ca=a, cb=b, cd=d
AK=5√6 см, KB=10 см
Объяснение:
Теорема биссектрисы прикреплена в рисунке. По ней мы имеем:
BK/KC=AB/AC=20/10=2
BK=2KC; CB=BK+KC=15⇒2KC+KC=15
3KC=15; KC=15/3=5 см
BK=BC-KC=15-5=10 см
Вторая теорема биссектрисы также прикреплена к ответу. По ней имеем:
AK=√AB*AC-BK*KC=√200-50=√150=√25*√6=5√6
Далее идут доказательства верности ответа другими, тяжёлыми для понимания теоремами. Их не желательно употреблять, они здесь только ради утверждения компетентности моего 2-го ответа. (Ну и для того, чтобы похвастаться знаниями тоже)
Проверим ответ по теореме Стюарта:
AK²*BC=AB²*KC + AC²*BK - BC*KC*BK
AK²*15=400*5 + 100*10 - 15*10*5=2250
AK²=2250/15=150
AK=√150=√25*√6=5√6
ЧТД
Третья формула для нахождения биссектрисы
AK²=AB² * KC/BC + AC² * BK/BC - BK*KC
AK²=2000/15+1000/15-50=200-50=150
AK=√150=√25*√6=5√6
ЧТД
Условие не корректно составлено
Объяснение:
Чтобы треугольник существовал, необходимо чтобы сохранялось неравенство сумма двух сторон должна быть больше третьей стороны. а+b>c;
Проверяем треугольник со сторонами 8см; 8см; 16см.
8+8=16 неравенство не сохраняется, значит такого треугольника не существует.
Формула нахождения площади по Герону
S=√(p(p-a)(p-b)(p-c)); где р- полупериметр треугольника
р=(а+b+c)/2=(8+8+16)/2=32/2=16см
S=√(16(16-8)(16-8)(16-16))=√(16*8*8*0)=0 площади нет, так как треугольник не существует.