угол АРВ равен центральному углу дуги АВ (соостветствующей хорде АВ) в окружности, описанной вокруг трапеции. Можно сослаться на теорему о угле между секущими, а можно и сделать вид, что её не занешь, и по ходу её джоказаьб - для этого надо через D провести прямую II АС, и угол между ней и DB будет измерять двумя дугами АВ (дуга СD такая же).
На самом деле уже доказано, что окружность, описанная вокруг АВР пройдет через О (центр описанной окружности), поскольку из О и Р отрезок АВ виден под одинаковым углом. Но мы опять сделаем вид ,что этого не понимаем, и продолжим доказывать :)))
Если мы проведем перпендикуляр через середину АВ, то он пройдет через О. И лучи ОА и ОВ будут составлять между собой угол, равный АРВ. Если же мы проведем окружность через А В и Р, то она это препендикуляр пересечет в какой-то точке, из которой АВ будет виден под таким же углом. В силу 5 постулата ЕВКЛИДА (не больше, не меньше :))) такая точка может быть только одна все !:))) Если бы через заданную точку можно было бы провести ДВЕ прямые под одинаковым углом, все геометрия бы пошла насмарку :)))
Найдём проекцию ребра на плоскость основания пирамиды. Она равна половине диагонали квадрата, лежащего в основании. ПрРеб = 5 * cos 45 = 5/sqrt(2)
Заодно найдём проекцию апофемы (пригодится дальше), она равна половине стороны квадрата: ПрАп = 5/2 = 2,5.
Теперь найдём ребро L по теореме Пифагора: его квадрат равен сумме квадратов высоты пирамиды и проекции ребра: L = sqrt ( 7^2 + (5/sqrt(2))^2) = sqrt ( 49 + 12.5) = sqrt ( 49 + 12.5) = sqrt ( 61.5) = 7.842
Угол а между ребром и плоскостью основания измеряется линейным углом между ребром и проекцией ребра на плоскость основания: соs a = ПрРеб/L = (5/sqrt(2))/sqrt ( 61.5) = 3,536/ 7.842 = 0,4508. соs a = 63гр.
Апофема А пирамиды (высота треугольника, представляющего собой боковую грань, опущенная из вершины на сторону основания) равна: А = sqrt ( 7^2 + 2,5^2) = sqrt ( 49 + 6,25) = sqrt ( 55,25) = 7,433
Угол в между плоскостью грани и плоскостью основания измеряется линейным углом между апофемой и проекцией апофемы на плоскость основания: соs в = ПрАп/А = 2,5/sqrt ( 55,25) = 2,5/ 7,433 = 0,3363. соs в = 70гр.
Площадь поверхности пирамиды складывается из площади 4-х граней и основания: Sосн = a^2 = 5^2 = 25. Sгр = 0,5 А * a = 0.5 * 7,433 * 5 = 18,5825
ответ:S пир = 99,33 кв.см. Угол наклона ребра к плоскости основания примерно равен 63гр., а угол наклона боковой грани к плоскости основания равен примерно 70гр.
угол АРВ равен центральному углу дуги АВ (соостветствующей хорде АВ) в окружности, описанной вокруг трапеции. Можно сослаться на теорему о угле между секущими, а можно и сделать вид, что её не занешь, и по ходу её джоказаьб - для этого надо через D провести прямую II АС, и угол между ней и DB будет измерять двумя дугами АВ (дуга СD такая же).
На самом деле уже доказано, что окружность, описанная вокруг АВР пройдет через О (центр описанной окружности), поскольку из О и Р отрезок АВ виден под одинаковым углом. Но мы опять сделаем вид ,что этого не понимаем, и продолжим доказывать :)))
Если мы проведем перпендикуляр через середину АВ, то он пройдет через О. И лучи ОА и ОВ будут составлять между собой угол, равный АРВ. Если же мы проведем окружность через А В и Р, то она это препендикуляр пересечет в какой-то точке, из которой АВ будет виден под таким же углом. В силу 5 постулата ЕВКЛИДА (не больше, не меньше :))) такая точка может быть только одна все !:))) Если бы через заданную точку можно было бы провести ДВЕ прямые под одинаковым углом, все геометрия бы пошла насмарку :)))
Найдём проекцию ребра на плоскость основания пирамиды. Она равна половине диагонали квадрата, лежащего в основании. ПрРеб = 5 * cos 45 = 5/sqrt(2)
Заодно найдём проекцию апофемы (пригодится дальше), она равна половине стороны квадрата: ПрАп = 5/2 = 2,5.
Теперь найдём ребро L по теореме Пифагора: его квадрат равен сумме квадратов высоты пирамиды и проекции ребра: L = sqrt ( 7^2 + (5/sqrt(2))^2) = sqrt ( 49 + 12.5) = sqrt ( 49 + 12.5) = sqrt ( 61.5) = 7.842
Угол а между ребром и плоскостью основания измеряется линейным углом между ребром и проекцией ребра на плоскость основания: соs a = ПрРеб/L = (5/sqrt(2))/sqrt ( 61.5) = 3,536/ 7.842 = 0,4508. соs a = 63гр.
Апофема А пирамиды (высота треугольника, представляющего собой боковую грань, опущенная из вершины на сторону основания) равна: А = sqrt ( 7^2 + 2,5^2) = sqrt ( 49 + 6,25) = sqrt ( 55,25) = 7,433
Угол в между плоскостью грани и плоскостью основания измеряется линейным углом между апофемой и проекцией апофемы на плоскость основания: соs в = ПрАп/А = 2,5/sqrt ( 55,25) = 2,5/ 7,433 = 0,3363. соs в = 70гр.
Площадь поверхности пирамиды складывается из площади 4-х граней и основания: Sосн = a^2 = 5^2 = 25. Sгр = 0,5 А * a = 0.5 * 7,433 * 5 = 18,5825
S пир = Sосн + 4Sгр = 25 + 4 * 18,5825 = 25 + 74,33 = 99,33 кв.см
ответ:S пир = 99,33 кв.см. Угол наклона ребра к плоскости основания примерно равен 63гр., а угол наклона боковой грани к плоскости основания равен примерно 70гр.