У параллелограмма противолежащие стороны равны => отрезок [АВ] равен отрезку [CD]. Диагонали параллелограмма в точке их пересечении делятся пополам. Пусть диагонали АС и BD пересекаются в точке М. Тогда из этих 3х предложений делаем вывод о том, что |СD| = |AB| = |AO| = |OC|, то есть, |ОС| = |CD|. Получается, что ∆ ОСD - равнобедренный ∆ по определению => у него (по признаку) углы при основании равны. Нам известен угол между боковыми сторонами, он равен 74°, тогда каждый из 2х других углов ∆ OCD равен (180°- 74°)/2 = 53°. А угол СОD в ∆ ОСD - это острый угол между диагоналями АС и BD. Тогда тупой угол между диагоналями АС и BD равен 180° - 53° = 127° (так как в условии задачи не сказано, какой именно угол между диагоналями нужно найти). ответ: острый угол между диагоналями равен 53°, тупой угол между диагоналями равен 127°.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Пусть дан отрезок АС.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Середина М отрезка АС построена.