решить. На рисунке треугольник ABC- равнобедренный с основанием AB, AB не равно AC,CM- медиана, BK- высота.Укажите верные утверждения. 1) Медиана CM является высотой. 2) Высота BK- является биссектрисой. 3) T- точка пересечения биссектрис. 4) T- точка пересечения высот.
Периметр равнобедренного треугольника равен 90°, а высота,, проведенная к основанию, 15 см. Найти стороны треугольника.
Обозначим вершины треугольника А,В,С. АВ=ВС.
Высота равнобедренного треугольника еще и его медиана и биссектриса и делит его на два равных треугольника.
Сумма длин боковой стороны и половины основания равна полупериметру треугольника. р=90:2=45 см
Примем длину боковой стороны АВ=ВС= х.
Тогда длина половины основания АМ=45-х
Из ∆ АВМ по т.Пифагора АВ²-АМ²=ВМ²
х²-(45-х)²=225
90х=2250, откуда х=25.
Боковые стороны треугольника равны по 25 см,
основание АС= 90-2•25=40 см.
Площадь треугольника равна половине произведения его сторон на синус угла между этими сторонами.
В нашем случае S = (1/2)AB*BC*Sinα или 3√3 = 2√3*3*Sinα.
Следовательно, Sinα = (3√3)/6√3 = 1/2.
Итак, угол В в треугольнике АВС равен 30°. Cos30° = √3/2.
По теореме косинусов находим сторону АС треугольника:
АС = √(АВ²+ВС²-2*АВ*ВС*Cos30) или
√(48+9-2*12√3*√3/2)=√21.
Ну, а радиус описанной около треугольника окружности находится по формуле: R = a*b*c/4S или в нашем случае R=4√3*3*√21/12√3 = √21.
ответ: радиус описанной около треугольника окружности равен √21.