1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
Xm=(Xa+Xb)/2 = (4-2)/2=1. Ym=(Ya+Yb)/2= (5-1)/2=2. M(1;2). Xk=(Xa+Xb)/2 = (-2-2)/2=-2. Yk=(Ya+Yb)/2= (5+3)/2=4. K(-2;4).
б) |MC|=√[(Xc-Xm)²+(Yc-Ym)²]=√[(-2-1)²+(3-2)²]=√10.
|KB|=√[(Xb-Xk)²+(Yb-Yk)²]=√[(4+2)²+(-1-4)²]=√61.
в) |MK|=(1/2)*|BC|. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=
√[(-2-4)²+(3+1)²]=√52. |MK|=√52/2=√13.
Или так: |MK|=√[(Xk-Xm)²+(Yk-Ym)²]=√[(-2-1)²+(4-2)²]=√13.
г) |AB|=√[(Xb-Xa)²+(Yb-Ya)²]=√[(4+2)²+(-1-5)²]=6√2. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=√[(-2-4)²+(3+1)²]=√52.
|AC|=√[(Xc-Xa)²+(Yc-Ya)²]=√[(-2+2)²+(3-5)²]=2.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.