Даны координаты вершины треугольника А(1,-2),В(2,4),С(0,1).
Определяем длины сторон по векторам.
АВ (c) BC (a) AС (b)
x y x y x y
1 6 -2 -3 -1 3
Длины сторон АВ = √(1+36) = √37 = 6,08276253
BC = √(4+9) = √13 = ,605551275
AC = √(1+9) = √10 = 3,16227766
Периметр Р = 12,85059147
Полупериметр р = 6,425295733
Площадь по Герону 4,5
Площадь можно найти по формуле, которая даёт результат прямо по координатам вершин треугольника.
S = (1/2)*|(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1)|.
S = 0,5 *((* 3) - (-1* 6)) = 4,5.
1) угол АВС (можно обозначить просто угол В).
Углы по теореме косинусов
cos A = (b^2+c^2-a^2)/(2bc) 34/ 38,47076812 = 0,883787916
A = arccos 0,883787916 = 0,486899232 радиан 27,89727103 градуса
cos B = (a^2+c^2-b^2)/(2ac) 40 /43,863424 = 0,911921505
B = arccos 0,911921505 = 0,422853926 радиан 24,22774532 градуса
cos C = (a^2+b^2-c^2)/(2ab) -14/22,8035085 = -0,613940614
C = arccos -0,613940614 = 2,231839496 радиан 127,8749837 градуса
Сумма 180.
2)Площадь треугольника АВС дана выше.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Даны координаты вершины треугольника А(1,-2),В(2,4),С(0,1).
Определяем длины сторон по векторам.
АВ (c) BC (a) AС (b)
x y x y x y
1 6 -2 -3 -1 3
Длины сторон АВ = √(1+36) = √37 = 6,08276253
BC = √(4+9) = √13 = ,605551275
AC = √(1+9) = √10 = 3,16227766
Периметр Р = 12,85059147
Полупериметр р = 6,425295733
Площадь по Герону 4,5
Площадь можно найти по формуле, которая даёт результат прямо по координатам вершин треугольника.
S = (1/2)*|(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1)|.
S = 0,5 *((* 3) - (-1* 6)) = 4,5.
1) угол АВС (можно обозначить просто угол В).
Углы по теореме косинусов
cos A = (b^2+c^2-a^2)/(2bc) 34/ 38,47076812 = 0,883787916
A = arccos 0,883787916 = 0,486899232 радиан 27,89727103 градуса
cos B = (a^2+c^2-b^2)/(2ac) 40 /43,863424 = 0,911921505
B = arccos 0,911921505 = 0,422853926 радиан 24,22774532 градуса
cos C = (a^2+b^2-c^2)/(2ab) -14/22,8035085 = -0,613940614
C = arccos -0,613940614 = 2,231839496 радиан 127,8749837 градуса
Сумма 180.
2)Площадь треугольника АВС дана выше.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.