1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
<EBC=180°-<C-<BEC=180°-90°-60°=30°,EB=EC*2=5*2=10 см
<BEC=<AEC-<BEC=180°-60°=120°,
<ABE=180°-<BEC-<BAE=180°-120°-30°=30°,значит
ΔAEB-равнобедренный,AE=EB=10 см
AC=AE+EC=10+5=15 см
2
ΔАСВ-РАВНОБЕДРЕННЫЙ прямоугольный,так как углы при основании 45°.CD-высота,биссектриса и медиана.Значит ΔCDB ,ΔACD-тоже равнобедренныe прямоугольныe, CD=DB=AD=8 см
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Объяснение:
1
<EBC=180°-<C-<BEC=180°-90°-60°=30°,EB=EC*2=5*2=10 см
<BEC=<AEC-<BEC=180°-60°=120°,
<ABE=180°-<BEC-<BAE=180°-120°-30°=30°,значит
ΔAEB-равнобедренный,AE=EB=10 см
AC=AE+EC=10+5=15 см
2
ΔАСВ-РАВНОБЕДРЕННЫЙ прямоугольный,так как углы при основании 45°.CD-высота,биссектриса и медиана.Значит ΔCDB ,ΔACD-тоже равнобедренныe прямоугольныe, CD=DB=AD=8 см
AB=2AD=2*8=16 см
3
<ACD=<АCЕ-<DCE=45°-20°=25° <A=180°-<ACD-<ADC = =180°-90°-25°=65°
<B=180°-<ACВ-<СAВ= 180°-90°-6 5°=25°