Решить:
1) в треугольнике авс точка к лежит на ав, а точка n – на вс, причем ак: кв = 3: 2, а bn: nc = 3: 2. отрезки ck и an пересекаются в точке о. найти ао: оn.
2) на каждом из оснований трапеции abcd построены вне трапеции равносторонние треугольники. докажите, что прямая, соединяющая вершины треугольников, не лежащие на основаниях трапеции, проходит через точку пересечения диагоналей трапеции.
1) По теореме Менелая
BK/KA *AO/ON *NC/CB =1
2/3 *AO/ON *2/5 =1
AO/ON =15/4
2) Треугольники, образованные диагоналями на основаниях трапеции, подобны (по накрест лежащим углам при параллельных). Правильные треугольники очевидно подобны. Таким образом синий и красный четырехугольники подобны. Отрезки от вершин до точки пересечения диагоналей являются соответствующими в подобных фигурах и составляют равные углы с соответствующими сторонами. Отрезки отложены от диагонали на равные углы и составляют развернутый угол, то есть прямую.