решение желательно Дан треугольник АВС, в котором АВ=12, АС=8, ВС=16. На стороне АС взята точка Х1 такая, что АХ1=2. На сторонах треугольника последовательно построены точки Х2, Х3, Х4, Х5, Х6 такие, что Х1Х2 || ВС, Х2Х3 || АС, Х3Х4 || АВ, Х4Х5 || ВС, Х5Х6 || АС. Найдите длину отрезка Х3Х6.
И.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три р.д. пятисот шестидесяти семи семисот восьмидесяти девяти ста двадцати трёх д.п. пятистам шестидесяти семи семистам восьмидесяти девяти ста двадцати трём в.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три т.п. пятьюстами шестьюдесятью семью семьюстами восемьюдесятью девятью ста двадцатью тремя п.п. пятистах шестидесяти семи семистах восьмидесяти девяти ста двадцати трёх
АС = BD
2. Диагонали прямоугольника точкой пересечения делятся пополам (свойство параллелограмма)
AO=BO=CO=DO
Значит, треугольника АОВ - равнобедренный с равными боковыми сторонами АО и ВО.
3. Углы при основании равнобедренного треугольника равны (свойство равнобедренного треугольника):
угол АВО = углу ВАО
4. Угол AOD - внешний угол треугольника АОВ. Градусная мера внешнего угла треугольника равна сумме двух внутренних углов этого треугольника, не смежных с ним:
∠AOD = ∠ABO + ∠BAO = 36° + 36° = 72°