Рух - відображення площині на себе, при якому відстані між точками площини зберігаються. Приклади руху: осьова симетрія, центральна симетрія, паралельний перенос. Властивості руху: відрізок переходить в відрізок, кут переходить в рівний йому кут, окружність переходить в окружність того ж радіуса і т. П.Мал. 1. Нехай є деяка виділена точка Про площині. Крім того, розглянемо довільну точку М тій же площині. Поворотом (позначення -) щодо точки О, званої центром повороту на Ðα (кут повороту) називається таке відображення площині на себе, при якому будь-яка точка М площині переходить в таку точку М1 тій же площині, що ОМ = ОМ1 і, крім того, ÐМОМ1 = α (Рис. 1). Доведемо, що поворот є рухом. Доказ (Рис. 2).Розглянемо точки М і N площині, що переходять при повороті відповідно в точки М1 і N1 тій же площині. Розглянемо трикутники ОМN і ОМ1N1. У цих трикутниках ОМ = ОМ1 і ОN = ОN1. ÐМОN = α - ÐМОN1; ÐМ1ОN1 = α - ÐМОN1, отже, ÐМОN = ÐМ1ОN1. Таким чином, зазначені трикутники рівні за двома сторонами і кутом між ними. Звідси випливає рівність відрізків МN = М1N1. Оскільки точки М і N вибиралися нами довільно, можна стверджувати, що при повороті довжини відрізків зберігаються. Теорема доведена. Нам необхідно навчитися використовувати розглянутий тип руху. Завдання (аналогічна № 1167 з підручника Атанасян, см. Список літератури) Побудуйте трикутник, який виходить з даного трикутника ABC поворотом навколо точки А на кут 60 ° проти годинникової стрілки (ΔАВС). Рішення (Рис. 3).При повороті точка А перейде в саму себе. Точки В і С перейдуть в точки В1 і С1 відповідно. Кути трикутника і довжини його сторін, відповідно до загальних властивостями руху, збережуться (всі позначення сторін і кутів дані на Рис. 3). Побудови при повороті вкрай за до циркуля побудувати дугу кола радіусом, рівним довжині сторони трикутника (АС або АВ), з центром в точці А, далі за до транспортира відкласти на дузі кут 60 ° і відзначити точку-образ (В1 або С1) . Поєднавши отримані точки-образи відрізками, можна отримати шуканий трикутник А1У1С1, що є чином трикутника АВС (ΔАВС = ΔА1В1С1). Точка О є точкою перетину биссектрис рівностороннього трикутника ABC. Доведіть, що при повороті навколо точки О на кут 120 ° трикутник ABC відображається на себе. Рішення.Точка О перетину биссектрис правильного трикутника є центром цього трикутника. Отже, вершини трикутника при повороті навколо точки О будуть «малювати» дуги кола, описаного навколо ΔАВС. Легко показати, що ÐВОС = ÐСОА = ÐАОВ = 120 °. Отже, при повороті, точка А перейде в точку В, точка В перейде в точку С і точка С перейде в точку А (нагадаємо, що кут повороту вважається позитивним, якщо поворот відбувається проти годинникової стрілки). Таким чином, ΔАВС = ΔАВС. Завдання вирішена. Завдання. Дана пряма, на якій задані точка О1 і точка О2 і дано точки А і В, що лежать по різні боки від цієї прямої. Причому мають місце рівності відстаней: О1А = О1В, О2А = О2В. Довести, що точки А і В симетричні щодо зазначеної прямий. Рішення (Рис. 5).Для доказу необхідного в завданню затвердження нам необхідно довести, що АМ = МВ і АВ ^ О1О2. Побудуємо коло радіусом О1А з центром в точці О1 і коло радіусом О2А з центром в точці О2. Розглянемо деяку осьову симетрію з віссю О1О2. При такому відображенні півкола, розташовані у верхній півплощині, перейдуть до відповідних півкола, розташовані в нижній півплощині щодо осі симетрії. При цьому точка перетину «верхніх» півколо - точка А - перейде в точку перетину «нижніх» півколо - точку В. Тобто точка В симетрична точці А відносно даної прямої. Завдання вирішена. На закінчення розберемо ще один застосування понять симетрії. Дан паралелограм ABCD. Довести, що точка перетину його діагоналей є його центром симетрії. Нагадування: фігура називається симетричною відносно точки О, якщо для кожної точки фігури симетрична їй точка щодо точки Про також належить цій фігурі. Точка О називається центром симетрії фігури. Кажуть також, що фігура має центральну симетрію.
ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :
Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,
ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :