Ребзя, мы все на карантине площадь боковой поверхности наклонной призмы равна 216 см,а расстояние между её боковыми рёбрами 5см, 6 см ,7 см.Найдите высоту призмы,если её боковое ребро образует с плоскостью основания угол
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
См. Объяснение.
Объяснение:
1-й с шкалированной линейки).
1) Чертим произвольный отрезок.
2) Измеряем длину отрезка (L).
3) Решаем уравнение:
2х + 6х = L
x = L/8.
4) От начала отрезка откладываем:
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.