2) Две площади основания: у нас в основания равносторонний треугольник, а его площадь нахоидтся по формуле (а^2 * корень из 3) / 4, где а - это сторона треугольника. Подставим: (8^2 * корень из 3) / 4 = (64 * корень из 3) / 4 = 16 корней из 3. У нас два основания, значит 2*S(осн.) = 32 корня из 3
3) Теперь просто складываем получившиеся площади: 288 + 32 корня из 3 = 32*(9 + корнеь из 3) - это и есть ответ)
Площадь треугольника равна половине произведения высоты на сторону, к которой проведена.
S=a•h:2
• Если высоты двух треугольников равны, то их площади относятся как основания.
Высота ∆ ADC и ∆ ABC общая.
Подробно.
S(ABD):S(ABC)=AD:AC
Точка D по условию делит АС в отношении 1:5.
Примем AD=a, тогда DC=5a.
AC=а+5а=6a
S(ABD):A(ABC)=1/6
S(ABC)=36
S(ABD)=36:6=6 см²
-----------
Площадь треугольника можно найти и по формуле
S=a•b•sinα:2, где a и b стороны треугольника, α - угол между ними.
Угол А общий для ∆ABD и ∆ABC, поэтому
S (ABD):S (ABC)=AB•AD:AB•AC, т.е. получается то же отношение AD:AC, равное для данного треугольника 1/6.
Площадь полной поверхности призмы есть сумма площадей боковой поверхности + две площади основания.
1) Площадь боковой поверхности: S(бок.) = 3 * (8 * 12) = 288 (см^2)
2) Две площади основания: у нас в основания равносторонний треугольник, а его площадь нахоидтся по формуле (а^2 * корень из 3) / 4, где а - это сторона треугольника. Подставим: (8^2 * корень из 3) / 4 = (64 * корень из 3) / 4 = 16 корней из 3. У нас два основания, значит 2*S(осн.) = 32 корня из 3
3) Теперь просто складываем получившиеся площади: 288 + 32 корня из 3 = 32*(9 + корнеь из 3) - это и есть ответ)