ребят мне нужно 1. При параллельном копировании точка D (1; 2) перемещается в точку D1(2; 0). Итак, каковы точки K(0; 2) и T(2; 1)?
2. Стороны треугольника пропорциональны 2: 3: 4. Если размер подобного треугольника 6 см, найдите его стороны.
3. Координаты точки M (-2; 1). Когда A вращается вокруг центра O на a = 450 °, он перемещается в точку M1. Найдите координаты точки M1
У треугольников ABC и DEC стороны общего угла пропорциональны.
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)
Пусть сторона АВ треугольника АВС равна х см тогда сторона ВС равна 2 1/3 х см, а сторона АС равна (2 1/3 х + 2) см (если сторона ВС на 2 см меньше стороны АС, то сторона АС, наоборот, на 2 см больше стороны ВС). По условию задачи известно, что периметр треугольника АВС (периметр треугольника равен сумме трех его сторон; Р = АВ + ВС + АС) равен (х + 2 1/3 х + (2 1/3 х + 2)) см или 36 см. Составим уравнение и решим его.
x + 2 1/3 x + (2 1/3 x + 2) = 36;
x + 2 1/3 x + 2 1/3 x + 2 = 36;
5 2/3 x = 36 - 2;
17/3 x = 34;
x = 34 : 17/3;
x = 34 * 3/17;
x = 6 (см) - сторона АВ;
2 1/3 * x = 7/3 * 6 = 14 (см) - сторона ВС;
2 1/3 x + 2 = 14 + 2 = 16 (см) - сторона АС.
ответ. АВ = 6 см, ВС = 14 см, АС = 16 см.