Ребро правильного тетраэдра dabc равно a. постройте сечение тетраэдра, проходящее через середину ребра da параллельно плоскости dbc, и найдите площадь этого сечения.
Площадь любой грани этого тераэдра a^2*корень(3)/4 (площадь равностороннего треугольника). А сечение - это тоже равносторонний треугольник, стороны которого - средние линии граней АВС, ADC и ABD. Сторона в 2 раза меньше, значит площадь - в четыре.
Площадь любой грани этого тераэдра a^2*корень(3)/4 (площадь равностороннего треугольника). А сечение - это тоже равносторонний треугольник, стороны которого - средние линии граней АВС, ADC и ABD. Сторона в 2 раза меньше, значит площадь - в четыре.
ответ a^2*корень(3)/16;