Ражнения Укажите, какие из предложений являются высказываниями. В случае,
когда предложение является высказыванием, однозначно ли опреде-
ляется его истинность — ложность?
а) 11-5=7; b) 12 -четное число; c) 2e0; d) 2 €0.
е) Параллелограмм имеет 4 стороны.
f) 37 - простое число.
g) Каков твой рост?
h) Все квадраты - четырехугольники.
i) Идет ли снег?
j) Четырехугольник не является параллелограммом.
k) Твоему братику 13 лет.
1) Нравятся ли тебе исторические книги?
m) Мадина хорошо поет.
n) Ты родился в Самарканде.
о) Противоположные углы равны.
p) Параллельные прямые пересекаются.
2√3 ед.
Объяснение:
Во условию в ΔABC AB=5 ед., AC=7 ед. , BC =10 ед.
Медиана АО - медиана, проведенная к большей стороне BC.
Достроим ΔABC до параллелограмма ABDC.
Диагонали параллелограмма пересекаясь, точкой пересечения делятся пополам , тогда AD= 2* AO.
По свойству квадратов диагоналей параллелограмма : сумма квадратов диагоналей параллелограмма равна сумме квадратов сторон.
AD² +BC² = 2*( AB²+AC²);
(2AO) ²+BC² = 2*( AB²+AC²);
4AO² +BC² = 2*( AB²+AC²);
4AO² + 10²=2*( 5²+7²);
4AO² = 2*( 25+49)-100;
4AO² =48;
AO² =48:4;
AO² =12;
AO= √12=√(4*3)=2√3 ед.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.