Здесь нужно вначале определить, находиится ли точка К между точками В и С или она лежит на продолжении стороны ВС.
В первом случае треугольник АКС подобен треугольнику АВС по трем углам. Составим отношение подобных сторон: АВ/АК = АС/СК = ВС/АС. Подставив числа, получим, что АС = 2 корня из 13, что не удовлетворяет основному неравенству треугольника: сумма любых двух сторон должна быть больше третьей стороны.
Первый случай не подходит. Значит, точка К лежит на продолжении стороны ВС, и ВС = 5, СК = 4, ВК = 5+4 = 9.
Тогда треугольник АСК подобен треугольнику АВК по трем углам. Составляем отношение подобных сторон: АВ/АС = АК/СК = ВК/АК, подставим числа, получим АК = 6, АС = 2 корня из 3.
Далее по теореме косинусов находим косинус угла АВС. затем синус этого угла и, наконец, площадь треугольника АВС. Если я верно посчитал, получится (5 корней из 11)/2.
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Здесь нужно вначале определить, находиится ли точка К между точками В и С или она лежит на продолжении стороны ВС.
В первом случае треугольник АКС подобен треугольнику АВС по трем углам. Составим отношение подобных сторон: АВ/АК = АС/СК = ВС/АС. Подставив числа, получим, что АС = 2 корня из 13, что не удовлетворяет основному неравенству треугольника: сумма любых двух сторон должна быть больше третьей стороны.
Первый случай не подходит. Значит, точка К лежит на продолжении стороны ВС, и ВС = 5, СК = 4, ВК = 5+4 = 9.
Тогда треугольник АСК подобен треугольнику АВК по трем углам. Составляем отношение подобных сторон: АВ/АС = АК/СК = ВК/АК, подставим числа, получим АК = 6, АС = 2 корня из 3.
Далее по теореме косинусов находим косинус угла АВС. затем синус этого угла и, наконец, площадь треугольника АВС. Если я верно посчитал, получится (5 корней из 11)/2.
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.