Равнобедренный треугольник с боковой стороной 35 см и квадратdefc со стороной 28 см образуют трапеции, найди разность и соотношение периметров этих трапеций, если db: be 3: !
1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Удачи и здоровья!
Даны точки A (-10;3), B (2;9), C (3;7).
Запишите уравнение окружности, описанной около треугольника ABC.
Объяснение:
1)Найдем длины сторон ( вдруг треугольник равносторонний).
АВ=√( (2+10)²+(9-3)²)=√180 ,
ВС=√( (3-2)²+(7-9)²)=√(1+4)=√5 ,
АС=√( (3+10)²+(7-3)²)=√(169+16)=√185. Наибольшая сторона АС.
Проверим т. обратную теореме Пифагора :
АС²=(√185)²=185 и АВ²+ВС²=(√180)²+(√5)²=180+5=185. Ура
185=185⇒ΔАВС-прямоугольный , с гипотенузой АВ.
2)Центр О(х;у) описанной окружности около прямоугольного треугольника лежит на середине гипотенузы. Найдем координаты О
х(О)=( (х(А)+х(В) ):2 , х(О)=(-10+2):2=-4,
у(О)=( (у(А)+у(В) ):2 , у(О)=(3+9):2=6, центр О(-4;6).
Радиус окружности r=1/2*AB , r=1/2*√185.
3) (x +4)²+ (y – 6)² = (1/2*√185)² , (x +4)²+ (y – 6)² = 46,25
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.