Расстояние от точки М до сторон прямоугольного треугольника АВС (угол С равен 90градусов) равны. Какое из следующих утверждений верно? а) плоскости МАВ и АВС перпендикулярны, б) плоскости МВС и АВС перпендикулярны,
в)плоскости МВС и АВС перпендикулярны,г) плоскости МАС МВС перпендикулярны,
д) условия в пунктах а-г неверны
S=(a * hтреуг)/2
hтреуг - в данном случае это апофема нашей пирамиды
Чтобы найти апофему рассмотрим треугольник образованный высотой пирамиды, апофемой и радиусом вписанной окружности между апофемой и высотой). У него угол при основании равен 45° (по условию), угол у основания высоты - 90°, следовательно, угол, образованный высотой и апофемой также 45°, значит, этот треугольник - равнобедренный, и радиус вписанной окружности равен высоте и равен 6 см. Значит сторона основания, равная диаметру вписанной окружности, равна 6*2=12 см. Апофема вычисляется по теореме Пифагора (т.к. наш равнобедренный треугольник еще и прямоугольный). Апофема равна √6²+6² = √72≈8,5 см.
Отсюда:
а) площадь боковой поверхности S=(12*8.5)/2=51 см²
б) площадь всей поверхности S=((12*8.5)/2)*4+12*12=204+144=348 см²