Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
AE -перпендикуляр из тупого угла к стороне DC, DE = EC.
трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая)
=> в равных тр-ах против равных сторон лежат равные углы: ADE = ECA
=> ECA = ADC = ABC = x
=> DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса)
сумма углов ромба равна 360 градусам =>
2x + 2x +x + x = 360
ADC = ABC = x = 60 (острый угол ромба)
DCB = DAB = 2х = 120 (тупой угол ромба) .Это?