Расстояние между параллельными прямыми a и b равно 20 см, а расстояние между параллельными прямыми a и c равно 45 см.
Определи взаимное расположение прямых b и c.
Каково расстояние между прямыми b и c?
Прямые b и c —
.
Расстояние между прямыми b и c равно
см.
64 + 50 = 114 см
68 ^ 4 = 17 cм - сторона ромба
114 - 68 = 46 - сумма диагоналей ромба
46 : 2 = 23 см - полусумма диагоналей (АО + КО, где О точка пересечения диагоналей)
Пусть КО = х, тогда
АО = 23 - х
x^2 + (23 - x)^2 = 289
x^2 + 529 + x^2 - 46x = 289
2x^2 - 46x + 240 = 0
x^2 - 23x + 120 = 0
D = 529 - 480 = 49
x= (23 + 7) : 2 = 15 cм - катет КО
23 - 15 = 8 см - катет АО
Диагонали равны:
АС = 8 * 2 = 16 см
ВК = 15 * 2 = 30 см
Площадь ромба равна половине произведения его диагоналей
S = 16 * 30 : 2 = 240 см^2
Объяснение:
Площадь трапеции равна произведению полусуммы ее оснований ( средней линии) на высоту.
S= ВН*(АД+ВС):2
Сделаем рисунок к задаче.
Обозначим вершины трапеции АВСД.
Меньшее основание обозначим ВС, большее АД
Стороны трапеции делятся каждая на отрезки от вершин ( точки вне окружности) до точки касания.
Отрезки касательных, проведенные из одной точки, равны.
Меньшее основание от вершин тупых углов до точки касания по 8 см, и равно 8+8=16см.
Большее основание от вершин острых углов равно 18+18=36 см
Полусумма оснований равна
(36+16):2=26 см
Теперь нужно найти высоту трапеции.
Опустим из вершины тупого угла высоту ВН на АД.
Расстояние от угла большего основания равнобедренной трапеции до основания высоты, опущенной из вершины меньшего основания, равно полуразности оснований.
АН=(36-16):2=10 см
Высоту ВН найдем по теорем Пифагора:
ВН² =АВ²-АН²
ВН² =(8+18)²-10²=
ВН=24 см
S= ВН ∙(АД+ВС):2
S= 24 ∙26= 624 см²