Тут всего лишь тригонометрическая "шутка". Треугольник ABK - прямоугольный, потому что AK и BK - биссектрисы углов, которые в сумме составляют 180°. Сумма половин углов A и B параллелограмма равна 90°, значит и ∠BKA равен 90°. Если M - проекция K на AB, то треугольник MBK подобен треугольнику ABK - это прямоугольные треугольники с общим углом. Если обозначить ∠BAD = α; то ∠BAK =∠MKB = α/2; отсюда легко найти BK = AB*sin(α/2); MK = BK*cos(α/2) = AB*sin(α/2)*cos(α/2) = AB*sin(α)/2; Но AB*sin(α) = H; - высота параллелограмма к стороне BC. Поэтому H = 2*MK; Площадь S = H*BC = 2*MK*BC = 4;
Проведем высоту трапеции СН. АС биссектриса прямого угла, значит угол САН=45° и АН=СН. По Пифагору АС²=АН²+СН². 36=2АН². АН=СН=3√2. В прямоугольном треугольнике НСD: угол НDС равен 60°, значит <HCD=30°. Против угла 30° лежит катет, равный половине гипотенузы. Тогда по Пифагору: СD²=HD²+СН² или 4HD²-HD²=СН² или 3HD²=18. Тогда HD=√6. Основание трапеции АD=АН+HD=3√2+√6. Итак, АD=3√2+√6, ВС=АН=3√2, СН=3√2. Площадь трапеции S=(ВС+АD)*СН/2 или S=(3√2+3√2+√6)*3√2/2=(36+3√12)/2=(36+6√3)/2=18+3√3. ответ: S=18+3√3. Можно и так: Площадь трапеции равна сумме площадей квадрата АВСН и треугольника НСD, то есть АН*СН+(1/2)СН*НD или S=18+(1/2)*3√2*√6=18+3√3.
Треугольник ABK - прямоугольный, потому что AK и BK - биссектрисы углов, которые в сумме составляют 180°. Сумма половин углов A и B параллелограмма равна 90°, значит и ∠BKA равен 90°.
Если M - проекция K на AB, то треугольник MBK подобен треугольнику ABK - это прямоугольные треугольники с общим углом.
Если обозначить ∠BAD = α; то ∠BAK =∠MKB = α/2;
отсюда легко найти
BK = AB*sin(α/2); MK = BK*cos(α/2) = AB*sin(α/2)*cos(α/2) = AB*sin(α)/2;
Но AB*sin(α) = H; - высота параллелограмма к стороне BC.
Поэтому H = 2*MK;
Площадь S = H*BC = 2*MK*BC = 4;
По Пифагору АС²=АН²+СН². 36=2АН². АН=СН=3√2.
В прямоугольном треугольнике НСD: угол НDС равен 60°, значит <HCD=30°. Против угла 30° лежит катет, равный половине гипотенузы.
Тогда по Пифагору: СD²=HD²+СН² или 4HD²-HD²=СН² или 3HD²=18.
Тогда HD=√6. Основание трапеции АD=АН+HD=3√2+√6.
Итак, АD=3√2+√6, ВС=АН=3√2, СН=3√2.
Площадь трапеции S=(ВС+АD)*СН/2 или
S=(3√2+3√2+√6)*3√2/2=(36+3√12)/2=(36+6√3)/2=18+3√3.
ответ: S=18+3√3.
Можно и так:
Площадь трапеции равна сумме площадей квадрата АВСН и треугольника НСD, то есть АН*СН+(1/2)СН*НD или
S=18+(1/2)*3√2*√6=18+3√3.