В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Overlight1337
Overlight1337
25.05.2022 08:20 •  Геометрия

Радиусы двух окружностей имеющих общий центр,относятся как 2: 3. хоорда большей окружности касается меньшей окружности и равна 20 см, найти радиусы.

Показать ответ
Ответ:
Ритаforever
Ритаforever
01.10.2020 09:42
Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.
В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2.
Отсюда R = 6√5см, а r = 4√5см.

Или так: из прямоугольного треугольника ОМА по Пифагору имеем:
ОА^2-ОМ^2=АМ^2 или
R^2-r^2=100 или
(5/9)*R=100 
Отсюда R=6√5см. r=4√5 см.

Радиусы двух окружностей имеющих общий центр,относятся как 2: 3. хоорда большей окружности касается
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота