ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
3.Угол D не больше угла Е и не больше угла F
4.Угол D меньше угла Е и меньше угла F
Объяснение:
Объяснение:
Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
Подробнее - на -