Радиус окружности прямоугольного треугольника, нарисованного снаружи, равен 6,5 см, а внутри радиус нарисованной окружности равен 2 см. В плоскости треугольника я угол между проекциями 30°. Найдите площадь проекции.
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
40 см и 25 см
Объяснение:
Дано:
Прямоугольный треугольник АВС (угол С - прямой):
гипотенуза АВ = 130 см
катет ВС = 104 см
Найти:
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
9
Объяснение:
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
d² = (√260/2)² + 4² = 260/4 + 16 = 65 + 16 = 81
d = √81 = 9
ответ: 9