Угол ROL - центральный угол. Центральный угол равен дуге, на которую он опирается. То есть ∪ RL (дуга RL) = 70°.
Тогда угол RKL будет вписанным. А вписанный угол равен половине дуги, на которую он опирается. Так как ∪ RL = 70°, то угол RKL будет равен 0,5 * 70° = 35°.
В треугольнике OKL стороны OL и OK будут равны, так как это радиусы окружности, а значит такой треугольник - равнобедренный. Так что угол OLK = углу OKL. Угол OLK = 35°, что и требовалось найти.
Номер 4:
CB - диаметр окружности, так как проходит через её центр, а диаметр делит окружность на две равные части, каждая из которых равна 180°.
∪ CB = 140° + ∪ AB = 180°
Отсюда следует, что ∪ AB = 180° - 140° = 40°
А значит вписанный угол x будет равен: 0,5 * 40° = 20°
Точка касания двух окружностей лежит на линии центров.
Если окружности касаются внешним образом, расстояние между центрами равно сумме радиусов.
Если окружности касаются внутренним образом, расстояние между центрами равно разности радиусов.
1) Окружность C касается окружности A внутренним образом, а окружности B внешним образом.
AC = |x-2|
BC =x+5
Для трех точек действует неравенство треугольника (ACB). Причем нас устраивает вырожденный треугольник (когда С лежит на AB), поэтому неравенство нестрогое.
AC+BC >= AB
Если x<2, то |x-2|=2-x
Тогда 2-x+x+5 >= 10 <=> 7>=10, противоречие
Следовательно x>=2 и |x-2|=x-2
x-2+x+5 >= 10
x >= (10+2-5)/2
x >= 3,5
2) Окружность C касается окружности A внешним образом, а окружности B внутренним образом.
AC =x+2
BC = |x-5|
Аналогично
x+2+x-5 >= 10
x >= 6,5
Таким образом радиус третьей окружности в любом случае не меньше 3,5.
Номер 3:
Угол ROL - центральный угол. Центральный угол равен дуге, на которую он опирается. То есть ∪ RL (дуга RL) = 70°.
Тогда угол RKL будет вписанным. А вписанный угол равен половине дуги, на которую он опирается. Так как ∪ RL = 70°, то угол RKL будет равен 0,5 * 70° = 35°.
В треугольнике OKL стороны OL и OK будут равны, так как это радиусы окружности, а значит такой треугольник - равнобедренный. Так что угол OLK = углу OKL. Угол OLK = 35°, что и требовалось найти.
Номер 4:
CB - диаметр окружности, так как проходит через её центр, а диаметр делит окружность на две равные части, каждая из которых равна 180°.
∪ CB = 140° + ∪ AB = 180°
Отсюда следует, что ∪ AB = 180° - 140° = 40°
А значит вписанный угол x будет равен: 0,5 * 40° = 20°
Номер 7:
Окружность равна 360°.
∪ RQ = 360° - ∪ RS - ∪ SQ = 360° - 90° - 130° = 140°.
Тогда вписанный угол x будет равен: 0,5 * 140° = 70°.
Номер 8:
Угол AOB - центральный угол. Это значит, что его градусная мера равна ∪ AB. Отсюда следует, что дуга AB = 100°.
Тогда вписанный угол x = 0,5 * 100° = 50°.
Надеюсь
Окружности:
центр A, радиус 2
центр B, радиус 5
центр C, радиус x
AB=10
Точка касания двух окружностей лежит на линии центров.
Если окружности касаются внешним образом, расстояние между центрами равно сумме радиусов.
Если окружности касаются внутренним образом, расстояние между центрами равно разности радиусов.
1) Окружность C касается окружности A внутренним образом, а окружности B внешним образом.
AC = |x-2|
BC =x+5
Для трех точек действует неравенство треугольника (ACB). Причем нас устраивает вырожденный треугольник (когда С лежит на AB), поэтому неравенство нестрогое.
AC+BC >= AB
Если x<2, то |x-2|=2-x
Тогда 2-x+x+5 >= 10 <=> 7>=10, противоречие
Следовательно x>=2 и |x-2|=x-2
x-2+x+5 >= 10
x >= (10+2-5)/2
x >= 3,5
2) Окружность C касается окружности A внешним образом, а окружности B внутренним образом.
AC =x+2
BC = |x-5|
Аналогично
x+2+x-5 >= 10
x >= 6,5
Таким образом радиус третьей окружности в любом случае не меньше 3,5.