Радіуси основ кульового поясу дорівнюють 3 і 4 см , а радіус кулі 5см. знайти об"єм кульового поясу якщо паралельні площини які перетинають кулю розміщені по один бік від центра кулі
V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.
Формула объема шарового слоя:
V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.
Тогда по формуле имеем:
V=(1/2)*π*1*(16+9+1/3) = π*(76)/6 = (12и2/3)*π.