1) В плоскости осевого сечения рассмотрим треугольник, образованный радиусом основания, высотой и образующей. Это - прямоугольный треугольник, в котором радиус основания и высота являются катетами, а образующая - гипотенузой.
2) Пусть х - высота конуса, тогда (х+2) - его образующая.
3) Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов:
6² + х² = (х+2)²
36 + х² = х² +4х + 4,
4х = 32,
х = 8 - это высота конуса.
4) Площадь осевого сечения равна половине произведения основания (диаметра основания конуса) на его высоту.
48 см²
Объяснение:
1) В плоскости осевого сечения рассмотрим треугольник, образованный радиусом основания, высотой и образующей. Это - прямоугольный треугольник, в котором радиус основания и высота являются катетами, а образующая - гипотенузой.
2) Пусть х - высота конуса, тогда (х+2) - его образующая.
3) Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов:
6² + х² = (х+2)²
36 + х² = х² +4х + 4,
4х = 32,
х = 8 - это высота конуса.
4) Площадь осевого сечения равна половине произведения основания (диаметра основания конуса) на его высоту.
Диаметр основания конуса D равен 2R:
D = 2 * 6 = 12 см.
5) Площадь осевого сечения конуса S равна:
S = (12 * 8) : 2 = 96 : 2 = 48 см².
ответ: 48 см².