А) Пирамида правильная, значит в основании лежит квадрат. Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см. б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору: d=√(10²-5²)=√75=5√3см Сторону найдем по Пифагору: а=√(75+75)=√150=5√6см. ответ: высота пирамиды 5см, сторона основания 5√6см.
Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см.
б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору:
d=√(10²-5²)=√75=5√3см
Сторону найдем по Пифагору:
а=√(75+75)=√150=5√6см.
ответ: высота пирамиды 5см, сторона основания 5√6см.
11² = 8²+х²-2*8*х*(-0,4).
Получаем квадратное уравнение х²+6,4х-57 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=6.4^2-4*1*(-57)=40.96-4*(-57)=40.96-(-4*57)=40.96-(-228)=40.96+228=268.96;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√268.96-6.4)/(2*1)=(16.4-6.4)/2=10/2=5;x₂=(-√268.96-6.4)/(2*1)=(-16.4-6.4)/2=-22.8/2=-11.4 (отрицательный корень не принимаем).
Площадь треугольника находим по формуле Герона:
S =√(p(p-a)(p-b)(p-c)) = √(12(12-8)(12-5)(12-11)) = √(12*4*7*1) = 18,330303.
Здесь р - полупериметр, равный (8+5+11)/2= 12.
Медиану СМ находим по формуле:
СМ = m(c) = (1/2)√(2a²+2b²-c²) = (1/2)√(2*5²+2*11²-8²) = (1/2)√( 50 + 242 - 64) ≈ 7,549834.