1) SinC=0,24.
2) √3/2.
3) 9 см.
Объяснение:
1) В треугольнике ABC известно, что AB=12см, BC=10см, sinA=0,2. Найдите синус угла C треугольника.
***
2) Сторона треугольника равна 24 см, а радиус описанной окружности - 8√3см Чему равен угол треугольника, противоположный данной стороне?
3)Две стороны треугольника равны 6см и 12см, а высота проведенная к третьей стороне - 4см. Найдите радиус круга, описанного вокруг треугольника.
1) По теореме синусов: ВС/SinA=AB/SinC;
SinC=AB*SinA/BC=12*0,2/10=0,24.
2) По свойству описанной окружности около треугольника:
R=AB/2SinC. Откуда SinC=AB/2R=24/2*8√3=3/2√3=(√3)/2.
3) R=abc/4S, где а,b и с - стороны треугольника; S - его площадь.
a=6 см, b=12 см, h=4 см, где h -высота BK.
AC - основание. АС=АК+КС.
АК=√6²-4²=√36-16=√20;
СК=√12²-4²=√144-16=√128;
АС=√20+√128=2√5+8√2;
S=1/2AC*BK=1/2(2√5+8√2)*4=2*(2√5+8√2)=4(√5+4√2);
R=abc/4S=6*12*(2√5+8√2)/4*4(√5+4√2)= =72*2(√5+4√2)/16(√5+4√2) = =144/16=9 см.
1.
АВD=ВСD, по равенству катетов АВ=СD и общей гипотенузе ВD
2.
КМТ=КТN по равенству катетов МТ=ТN и общему катету КТ
6.
АЕD=DFB по равенству гипотенуз АD=DВ и равенству катетов ЕD=DФ
ЕСD=СFD по равенству катетов ЕD=DF и общей гипотенузе СD
АDС=СDВ по равенству катетов АD=DВ и общей гипотенузе СD
7.
RМS=RNS по равенству углов R=S и общей гипотенузе RS
RМТ=ТNS по равенству катетов RМ=NS (доказано выше) и равенству гипотенуз RТ=ТS (следует из того что треугольник RТS - равнобедренный по углам R=S)
1) SinC=0,24.
2) √3/2.
3) 9 см.
Объяснение:
1) В треугольнике ABC известно, что AB=12см, BC=10см, sinA=0,2. Найдите синус угла C треугольника.
***
2) Сторона треугольника равна 24 см, а радиус описанной окружности - 8√3см Чему равен угол треугольника, противоположный данной стороне?
***
3)Две стороны треугольника равны 6см и 12см, а высота проведенная к третьей стороне - 4см. Найдите радиус круга, описанного вокруг треугольника.
***
1) По теореме синусов: ВС/SinA=AB/SinC;
SinC=AB*SinA/BC=12*0,2/10=0,24.
***
2) По свойству описанной окружности около треугольника:
R=AB/2SinC. Откуда SinC=AB/2R=24/2*8√3=3/2√3=(√3)/2.
***
3) R=abc/4S, где а,b и с - стороны треугольника; S - его площадь.
a=6 см, b=12 см, h=4 см, где h -высота BK.
AC - основание. АС=АК+КС.
АК=√6²-4²=√36-16=√20;
СК=√12²-4²=√144-16=√128;
АС=√20+√128=2√5+8√2;
***
S=1/2AC*BK=1/2(2√5+8√2)*4=2*(2√5+8√2)=4(√5+4√2);
***
R=abc/4S=6*12*(2√5+8√2)/4*4(√5+4√2)= =72*2(√5+4√2)/16(√5+4√2) = =144/16=9 см.
Объяснение:
1.
АВD=ВСD, по равенству катетов АВ=СD и общей гипотенузе ВD
2.
КМТ=КТN по равенству катетов МТ=ТN и общему катету КТ
6.
АЕD=DFB по равенству гипотенуз АD=DВ и равенству катетов ЕD=DФ
ЕСD=СFD по равенству катетов ЕD=DF и общей гипотенузе СD
АDС=СDВ по равенству катетов АD=DВ и общей гипотенузе СD
7.
RМS=RNS по равенству углов R=S и общей гипотенузе RS
RМТ=ТNS по равенству катетов RМ=NS (доказано выше) и равенству гипотенуз RТ=ТS (следует из того что треугольник RТS - равнобедренный по углам R=S)