Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
0,5
Объяснение:
1-й
Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
sin 45° = √2/2.
Отсюда площадь треугольника равна:
(1 * √2 * √2/2) : 2 = (1 * 2/2) : 2 = 0,5