Так как PS=RS, то треугольник PSR с основанием PR боковыми сторонами PS и RS является равнобедренным. Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180° Подставляем в выражение известные нам значения: (1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180° Упрощаем: 4 * ∠PSR= 180° ∠PSR = 45° Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR ∠SPR = ∠SRP= 1,5 * 45°=67,5° Делаем проверку, того что все углы в треугольнике в сумме дают 180° 67,5° + 67,5° + 45°=180° Всё верно. ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
проведем в пирамиде диагонали основания и на их пересечении поставим точку О Диагональ квадрата со стороной 1 равна √2 половина диагонали √2/2
От точки О на сторону AD опустим перпендикуляр, из точки S сделаем тоже самое. Поставим точку М. Треугольник АDS равносторонний, поэтому перпендикуляр из вершины S на сторону AD тоже попадет в точку M
SO - высота правильной пирамиды равна половине диагонали основания.
SO=√2/2
SM - высота равностороннего треугольника ADS равна √3/2AD=√3/2
Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR
Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180°
Подставляем в выражение известные нам значения:
(1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180°
Упрощаем:
4 * ∠PSR= 180°
∠PSR = 45°
Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR
∠SPR = ∠SRP= 1,5 * 45°=67,5°
Делаем проверку, того что все углы в треугольнике в сумме дают 180°
67,5° + 67,5° + 45°=180°
Всё верно.
ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
проведем в пирамиде диагонали основания и на их пересечении поставим точку О Диагональ квадрата со стороной 1 равна √2 половина диагонали √2/2
От точки О на сторону AD опустим перпендикуляр, из точки S сделаем тоже самое. Поставим точку М. Треугольник АDS равносторонний, поэтому перпендикуляр из вершины S на сторону AD тоже попадет в точку M
SO - высота правильной пирамиды равна половине диагонали основания.
SO=√2/2
SM - высота равностороннего треугольника ADS равна √3/2AD=√3/2
Треугольник МОS - прямоугольный угол О=90 градусов.
Косинус угла МS0 равен отношению прилежащего катета к гипотенузе
CosМS0=SO/SM=√(2/3)
sinMSO=корень(1-(√(2/3)^2)=1/√3