Дано :треугольник CKD равнобедренный,медиана KE. доказать : COD равнобедренный.
доказательство: Рассмотрим треугольники COK и KOD. угол COK равен углу DOK(т.к. в равнобедренном треугольника медиана проведенная к основанию является высотой и биссектрисой). CK=DK(т.к. треугольник CDK равнобедренный) и сторона KO общая значит треугольник COK равен треугольнику DOK(по двум сторонам и углу между ними) значит сторона CO равна стороне OD( в равных треугольниках против равных углов лежат равные стороны) значит треугольник COD равнобедренный(т.к. две стороны равны)
ты конечно можешь покороче написать, я писала так,чтобы тебе было понятно решение задачи
Поскольку решать будем без чертежа, то рассмотрим осевое сечение конуса, т.е. треугольник АВС, где АВ и АС образующие, угол В = 120. ВН - высота. Проведем прямую параллельную основанию конуса, по которой плоскость пересечет конус. Точки пересечения этой прямой собразующими и высотой М, К, О. М лежит на АВ, К на ВС, О на ВН. ВО : ОН = 2 : 3. Образующая АВ = 12 см Треуг. АВС прямоугольный и равнобедренный, угол А = (180 - 120) : 2 = 30. Напротив угла 30 градусов лежит катет вдвое меньше гипотенузы, т.е. ВН = 12 : 2 = 6 см. Так как ВО : ОН = 2 : 3, то ВН состоит из 5 частей. ВО = 6 : 5 * 2 = 2,4 см Рассмотрим треуг. ВОМ, радиус которого нам нужен для вычисления площади сечения. МО - это и есть искомый радиус. Поскольку МО параллельно АН, то угол ВМО = ВАН = 30 как соответствующие углы при параллельных прямых АН и МО и секущей АВ. Тогда МВ = 2 * 2,4 = 4,8 см. МО^2 = MB^2 - BO^2 MO^2 = 4,8^2 - 2,4^2 = 23,04 - 5,76 = 17,28 см^2 MO = R радиусу сечения. Тогда площадь сечения: S = ПR^2 = 17,28*П ответ: 17,28*П
доказать : COD равнобедренный.
доказательство:
Рассмотрим треугольники COK и KOD.
угол COK равен углу DOK(т.к. в равнобедренном треугольника медиана проведенная к основанию является высотой и биссектрисой).
CK=DK(т.к. треугольник CDK равнобедренный)
и сторона KO общая
значит треугольник COK равен треугольнику DOK(по двум сторонам и углу между ними)
значит сторона CO равна стороне OD( в равных треугольниках против равных углов лежат равные стороны)
значит треугольник COD равнобедренный(т.к. две стороны равны)
ты конечно можешь покороче написать, я писала так,чтобы тебе было понятно решение задачи
Проведем прямую параллельную основанию конуса, по которой плоскость пересечет конус. Точки пересечения этой прямой собразующими и высотой М, К, О. М лежит на АВ, К на ВС, О на ВН.
ВО : ОН = 2 : 3.
Образующая АВ = 12 см
Треуг. АВС прямоугольный и равнобедренный, угол А = (180 - 120) : 2 = 30.
Напротив угла 30 градусов лежит катет вдвое меньше гипотенузы, т.е. ВН = 12 : 2 = 6 см.
Так как ВО : ОН = 2 : 3, то ВН состоит из 5 частей.
ВО = 6 : 5 * 2 = 2,4 см
Рассмотрим треуг. ВОМ, радиус которого нам нужен для вычисления площади сечения. МО - это и есть искомый радиус.
Поскольку МО параллельно АН, то угол ВМО = ВАН = 30 как соответствующие углы при параллельных прямых АН и МО и секущей АВ.
Тогда МВ = 2 * 2,4 = 4,8 см.
МО^2 = MB^2 - BO^2
MO^2 = 4,8^2 - 2,4^2 = 23,04 - 5,76 = 17,28 см^2
MO = R радиусу сечения.
Тогда площадь сечения:
S = ПR^2 = 17,28*П
ответ: 17,28*П