В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС ∠АВД=∠СВД,В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС) Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам). ВД - их общая сторонаВ ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними. По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.
Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:
4^2=2c⇒c=8⇒второй кусок гипотенузы равен 8-2=6.
Квадрат высоты прямого угла равен произведению отрезков гипотенузы:
h^2=2·6=12⇒h=√12=2√3
Площадь треугольника равна половине произведения стороны на высоту⇒
S=(1/2)·8·2√3=8√3
ответ: 8√3
Второй Треугольник ABC; C- прямой угол, BC=4; CD - высота, BD=2⇒в прямоугольном треугольнике BCD гипотенуза BC в два раза больше катета BD⇒∠BCD=30°⇒∠CBD=90-30=60°⇒∠CAB=90-60=30°⇒ гипотенуза AB в два раза больше катета BC⇒AB=4·2=8. Площадь треугольника найдем по формуле половина произведения двух сторон на синус угла между ними:
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС) Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам). ВД - их общая сторонаВ ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними. По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.
4^2=2c⇒c=8⇒второй кусок гипотенузы равен 8-2=6.
Квадрат высоты прямого угла равен произведению отрезков гипотенузы:
h^2=2·6=12⇒h=√12=2√3
Площадь треугольника равна половине произведения стороны на высоту⇒
S=(1/2)·8·2√3=8√3
ответ: 8√3
Второй Треугольник ABC; C- прямой угол, BC=4; CD - высота, BD=2⇒в прямоугольном треугольнике BCD гипотенуза BC в два раза больше катета BD⇒∠BCD=30°⇒∠CBD=90-30=60°⇒∠CAB=90-60=30°⇒ гипотенуза AB в два раза больше катета BC⇒AB=4·2=8. Площадь треугольника найдем по формуле половина произведения двух сторон на синус угла между ними:
S=(1/2) BC·BA·sin B=(1/2)4·8·(√3)/2=8√3